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1. Synthetic population 31 
 32 
1.1. Data Sources 33 
Our agent-based model (ABM) used a “synthetic population” to represent a human population in its 34 
environment, based on real-world data. We used multiple datasets to create a synthetic population of 35 
Colombia for the year 2010: (1) a sample of the Colombia 2005 census collected by the Colombian 36 
National Administrative Department of Statistics,  and available from the Integrated Public Use of 37 
Microdata Series, International (IPUMS-International) database1; (2) population counts, the number of 38 
students, and the number of people employed from the Colombian National Department of Statistics 39 
(DANE: Departamento Administrativo Nacional de Estadística)2; (3) the number of public schools, 40 
private schools, and universities by municipality from the Colombian National Ministry of Education 3; 41 
(4) 2010 population density data at ~100 m2 resolution from the WorldPop Americas project4; (5) land-42 
use data at ~1 km2 resolution from the Global Rural Urban Mapping Project (GRUMP)5; (6) temperature 43 
data from the WorldClim Project 6; (7) geographic coordinates for buildings from the OpenStreetMap 44 
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project 7; (8) administrative boundary data of the 1st  administrative  level (departments) and of 45 
municipalities from the Colombian Geographic Information System For National And Regional 46 
Comprehensive Land-Use Planning and Management Project8.  47 
 48 
1.2. Demographic characteristics of households and individuals 49 
We derived a population of “synthetic” humans with a marginal distribution of demographic 50 
characteristics that matched the real population, using various statistical algorithms. This synthetic 51 
population represented each of the 45,509,584 people in Colombia in 2010, distributed across 1,122 52 
municipalities and 33 departments. We assigned demographic characteristics to individuals (age, gender, 53 
school attendance, employment status) and households (size, head of household age, municipality, 54 
urban/rural location), using the Iterative Proportion Updating Algorithm9 (IPU) to match these 55 
characteristics to the census data. The IPU algorithm matched demographic characteristics of the 56 
synthetic population to the real population at the household and municipality level by modifying the 57 
number of individuals with specified values for these characteristics. For example, it matched the age 58 
distribution of a synthetic municipality to a real municipality by iteratively modifying the number of 59 
synthetic people with certain ages. This process repeated iteratively until the error between the synthetic 60 
households and the data was below 1% or until 100 iterations were completed. After each iteration the 61 
IPU algorithm measured the goodness of fit using a 𝜒"test comparing the distribution of each 62 
characteristic between the synthetic and real population. For 97% of synthetic municipalities, the age-63 
structure was not statistically significantly different from that of the real population (p<0.05). The 64 
coefficient of determination (R2) between the proportion females, the number of students, and the number 65 
of employees in synthetic municipalities and their real-world equivalents was near 1.0 for each of these 66 
indicators. The overall age and gender distributions for the synthetic population of Colombia and the 67 
Census estimates for 2010 show an adequate approximation of the synthetic population in both gender 68 
and age (Fig. S6).  69 
 70 
1.3. Location of households 71 
The IPU algorithm assigned demographic characteristics to households and individuals but did not assign 72 
geographical locations.  We created a “household locator” algorithm that assigned geographical locations 73 
to households according to data on population density and land-use. We created a 1 x 1 km grid across the 74 
country (789,116 grid cells that each contained at least one person). Then we assigned each household in 75 
a municipality (from the IPU algorithm) to a random grid cell in the urban area within the geographical 76 
boundaries of this municipality. As we placed households in grid cells, we ensured that the population 77 
density of each cell did not exceed the observed values. For each household within a grid cell, we 78 
randomly selected coordinates from available house coordinates in the OpenStreetMap dataset. If no 79 
house coordinates were available from OpenStreetMap to assign to a synthetic household, we assigned 80 
random coordinates within a 100-meter radius from a road within the grid cell. If a grid cell did not 81 
contain any roads, we assigned random coordinates from anywhere within a grid cell. For 30 out of 33 82 
departments the spatial correlation coefficient10 between the population density of our synthetic 83 
population and the WorldPop data was >80% (Fig. S7) .  Population density in the remaining three 84 
departments was very low and did not match as well (these low-density areas did not contribute much to 85 
disease transmission).  86 

 87 
1.4. Location of schools and student assignment 88 
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We also created an algorithm to assign geographic locations to schools. We used data from the Colombia 89 
Ministry of Education on the number of schools per municipality, school grade levels, and school sizes. 90 
For each school in a municipality, we randomly selected coordinates from available school coordinates in 91 
the OpenStreetMap dataset. If coordinates were not available for every school listed by the Ministry of 92 
Education, we randomly assigned the remaining schools to one of five 10 x 10 km grid cells that had the 93 
highest number of synthetic students and that were located within the municipality. We assigned random 94 
coordinates from within this grid cell to each school for which no coordinates were available in 95 
OpenStreetMap.  96 
 97 
1.5. Location of workplaces and employee assignment 98 
We also assigned geographical locations to workplaces. First, we created a list of synthetic workplaces 99 
with sizes according to the distribution of workplace size given by the 2005 Census. We created sufficient 100 
workplaces in each municipality to fit all employees.  Workplaces were classified into small (1-50 101 
employees), medium (51-200 employees), or large (>200 employees) size. For each workplace in a 102 
municipality, we randomly selected coordinates from available workplace or school coordinates in the 103 
OpenStreetMap dataset (a school served as a workplace for teachers and staff). If coordinates were not 104 
available for every workplace, we randomly assigned the remaining workplaces to one of the five 1 x 1 105 
km grid cells that had the highest population density and that was located within a municipality. We 106 
assigned random coordinates from within these grid cells to each workplace for which no coordinates 107 
were available in OpenStreetMap.  108 
 109 
2. Mobility model  110 
 111 
2.1. Students 112 
People designated to attend schools by the IPU algorithm were assigned to specific schools. Children 1-5 113 
years were assigned to a pre-school, 6-10 to a primary school, 11-17 to a secondary school, and 17+ to a 114 
university. We assigned students to a school within, or outside their municipality according to 115 
information about this assigned by the IPU algorithm.  We randomly assigned students going to a school 116 
within their municipality to one of the five closest schools with availability for the student age and grade. 117 
For students going to a school outside their municipality, we randomly assigned them to one of the five 118 
closest schools in a neighboring municipality.  This algorithm has been used previously to represent 119 
student mobility 11. Students >17 years were assigned randomly to one of the five closest universities 120 
located within their department.  121 
 122 
2.2. Employees 123 
We assigned employees to workplaces based on commuting times assigned to them by the IPU algorithm, 124 
based on census data. The IPU algorithm also assigned employees to be working within or outside of their 125 
municipality, based on census data. For each employee working within her municipality, we used her 126 
commuting time to determine the distance to her workplace, assuming an average travel speed of 30 127 
km/hr. along Euclidean distance. We then drew a circle around her house with the commute distance as 128 
radius and randomly assigned the employee to one of five workplaces located within the municipality and 129 
closest to the circle. We assigned employees working outside of their municipality to a random workplace 130 
located anywhere outside of the municipality, but within their department.  131 
 132 
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2.3. Inter-departmental mobility 133 
To enable travel between departments, we swapped the department of the school or workplace for 5% of 134 
students and employees that lived close to a department border. i.e., for each department, we randomly 135 
selected a 5% sample of all students and employees that lived within 10 km of a border. For each of these 136 
students and employees, we also randomly selected a “partner student or employee” from the neighboring 137 
department, also living within 10 km of the border. We then swapped the school or workplace between 138 
these partners.  139 
 140 
3. Mosquitos 141 
 142 
The spatial occurrence of mosquitoes was determined by their probability of occurrence computed from 143 
the largest database of Aedes aegypti occurrence compiled by Kraemer et al. with a 5km resolution 12. For 144 
each location in the simulation region (household, school, or workplace) with a probability of occurrence 145 
higher than 0.8 13, we attached a mosquito population at a fixed ratio ρ of 1.02 pupae per human (Fig. S7) 146 
14.  The duration of pupal development (𝛿$) decreased exponentially with increasing temperature, in 147 
agreement with empirical observations 15. This was implemented in our modeled as 16: 148 
 149 

29.97723 - 8.38467 * log(temperature).  150 
 151 
We assumed a proportion of female mosquitos (𝑝&) of 0.5 16 and a rate of successful emergence (𝛥() of 152 
0.83 adults/day 16. Adult mosquitoes lived for a fixed number of 18 days (𝐿* 17. Hence under equilibrium 153 
conditions, the number of adult, female mosquitoes per human in each location was determined by: 154 
 155 

𝑁* = 𝜌
𝑝& × 𝛥( × 𝐿*

𝛿$
. 156 

 157 
 158 
3. Agent-based simulation 159 
 160 
3.1. Model overview 161 
To represent disease transmission in the Colombia synthetic population, we used the existing agent-based 162 
modeling platform developed by the University of Pittsburgh named Framework for Reconstructing 163 
Epidemiological Dynamics (FRED) 18. FRED is an open-source, highly modular object-oriented platform 164 
for epidemic modeling. FRED is written in C++, is scalable, and is efficient for simulating epidemics in 165 
large populations. FRED was developed primarily to represent transmission of a respiratory disease such 166 
as influenza. In this representation, transmission occurs with a certain probability when human agents are 167 
in the same location (house, school, or workplace). We expanded FRED with a representation of 168 
mosquito-borne virus transmission. We assigned a mosquito population to each location, as described 169 
above. When a susceptible human agent appeared in a location with a mosquito population, an infected 170 
mosquito would transmit virus, with a specified probability, to the human host and vice-versa. The 171 
probability of transmission between mosquitos and humans also depended on the mosquito biting rate.  172 
 173 
3.2. Pathogen transmission 174 
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We assumed an average mosquito biting rate 𝑏*of 0.5/day/mosquito 19,20. An infectious human could 175 
infect a mosquito, when visiting a location with mosquitos and when bitten, with an infection rate 𝛽*of 176 
0.876/day (calibrated). We assumed that this infection rate is the same for symptomatic and asymptomatic 177 
individuals as other similar models have assumed 21.  Similarly, infectious mosquitos would infect 178 
susceptible humans who visited their location with an infection rate 𝛽2 of 0.196/day (calibrated) (Fig. 1). 179 
The probability of a human being bitten by an infectious mosquito in a location depended on the density 180 
of human hosts, the number of infectious mosquitos, and the average 𝑏*. Infected mosquitos became 181 
infectious after the extrinsic incubation period of 11 days 22. Humans became infectious after an average 182 
6-day latency period (lognormal distribution) 22 and remained infectious for an average 4.83-day 183 
infectious period (lognormal distribution) 22. Only 7.2% of infected humans became symptomatic and 184 
were reported by the surveillance system (calibrated). This case detection rate𝛤 was composed of the 185 
probability of being symptomatic, the probability of a symptomatic case visiting a clinical care provider, 186 
and the probability of the provider to report this case to the surveillance system. Infectious humans 187 
contributed to transmission regardless of showing clinical symptoms. After infection, humans acquired 188 
lifelong immunity. Mosquitos remained infectious for the duration of their life, fixed at 18 days 17. We 189 
simulated epidemics for a maximum duration of two years and could ignore human population dynamics, 190 
such as birth and death rates.  191 
 192 
3.3. Vector-control 193 
We represented different attributes of vector control using a set of vector-control-specific parameters 194 
(Table S2). Vector control influenced virus transmission by reducing the number of pupae at a location 195 
(household, school, or workplace) with an efficacy rate 𝜖5. Based on the literature, we assumed a default 196 
efficacy of 80%23–25. Vector control activities were initiated by a municipality after the reported CHIKV 197 
incidence rate (IR) had exceeded an initiation threshold𝜓5. We determined an initiation threshold of 198 
20/100,000. Vector control by default continued for the duration of the epidemic. The proportion of 199 
neighborhoods in each municipality that participated in vector control activities increased with a 200 
neighborhood recruitment rate  𝜆5 each day. We determined a 𝜆5 of 7%/day. In each neighborhood, only 201 
a proportion of households participated according to the household participation rate 𝜔5. We found a 202 
default 𝜔5  of 80% in the literature23–25. We modified each of these parameters for vector control when 203 
estimating the influence of each factor on the overall effectiveness of the intervention. We defined the 204 
effectiveness of vector control strategies as the percent pupae reduced at the municipality level.  205 
 206 
3.4. Model fitting to data 207 
Most of the model parameters were instantiated with values reported in the literature (Table S1). We used 208 
transmission parameters reported for DENV to represent CHIKV transmission (𝜉*, 𝜉2, 𝛾2) where 209 
necessary due to the absence of CHIKV-specific parameters at the time of study. We estimated the values 210 
for 𝛽*, 𝛽2 and 𝛤2  by calibrating the model to real-world CHIKV case count data reported by the 211 
Colombia surveillance system (SIVIGILA). We used counts of total (suspected and confirmed) CHIKV 212 
infection as reported by this system. A suspected case of CHIKV was defined as the acute onset of fever 213 
> 38 ºC and severe arthralgia or arthritis not explained by other medical conditions, and residing or 214 
having visited epidemic or endemic areas within two weeks prior to the onset of clinical symptoms26. A 215 
laboratory confirmed case was defined as a suspected case with positive viral isolation or RT-PCR, or 216 
positive serology (IgM or a four-fold increase in CHIKV IgG)26.  217 
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 218 
At the time of the study, CHIKV case count data were available from October 2014 to February 2015 (24 219 
weeks) and only for municipalities that had reported > 200 cases. At the end of the study, data for the 220 
entire epidemic became available and we used those data to test the model results. We calibrated model 221 
parameters to fit the first 24 weeks of the CHIKV epidemic in the city of Riohacha using a 𝜒" goodness-222 
of-fit measure. Riohacha was one of the first cities to report this outbreak. To find an optimal solution for 223 
the parameter values, i.e. values that resulted in the lowest 𝜒" error of the overall model, we used a global 224 
approach to the Nelder-Mead simplex optimization algorithm27. We used this algorithm since it provides 225 
fast solutions without information about the derivatives of the system. The Nelder-Mead simplex method 226 
generates a simplex that represents different sets of values for the parameters, the total number of 227 
parameters is the number of dimensions, n. For n dimensions, a simplex is denoted by n+1 vertices (e.g. 228 
in two dimensions, a simplex represents a triangle). In each iteration of the algorithm, the error between 229 
the model and the data is computed for each of the vertices, and the highest-error vertex is excluded and 230 
replaced. Vertex-replacement uses four operations: reflexion, expansion, contraction, and shrinking. The 231 
first three operations are computed in this order until a vertex with a lower error is found. If none is 232 
found, then the simplex shrinks and moves to the next iteration. This algorithm can lead to a locally 233 
optimal solution. We used multiple starting points to find a global solution. The parameters resulting from 234 
this fitting procedure to the Riohacha CHIKV epidemic led to simulated epidemic curves for the other 235 
municipalities that also fitted their observed data (Fig. S1). We instantiated two vector-control parameters 236 
with values reported in the literature: the efficacy rate 𝜖5 and the household participation rate 𝜔523–25. We 237 
used the duration of the epidemic as the default duration for vector control and adjusted the neighborhood 238 
recruitment rate 𝜓5 and the initiation threshold 𝜆5 to exploratory values.  239 
 240 
3.5 Sensitivity analysis 241 
We conducted a sensitivity analysis to better understand how the number of pupae per person (ρ, default 242 
1.02) and temperatures affected the simulated CHIKV epidemic curve. We simulated the CHIKV 243 
epidemic for the cities of Santa Marta and Riohacha, for scenarios with and without vector control 244 
intervention, while ranging the pupae per person from 50% to 150% of the default value in 10% 245 
increments. We conducted 20 simulations for each scenario and reported the average epidemic curve for 246 
each scenario (Fig. S3). Similarly, we simulated the epidemic using each of the monthly temperature 247 
grids instead of the average annual temperature. Monthly temperatures varied from 95% to 103% of the 248 
default average annual value. We also conducted 20 simulations for each temperature scenario and 249 
reported the average curve for each (Fig. S4). 250 
 251 
3.6. Model testing 252 
 253 
At the end of our study, additional data on the CHIKV epidemic became available. We used CHIKV case 254 
counts reported until week three of 2016 to test the model fit for the entire epidemic period. We compared 255 
the aggregate simulated case counts for each of the six regions in Colombia with the observed data and 256 
found a good fit for every region except Caribe and Insular (Fig. 4): even the model with vector control in 257 
all municipalities overestimated the epidemic peak in these regions. We suspect that the case detection 258 
rate in Caribe may have decreased during the epidemic and that the particular spatial pattern of the island 259 
communities caused the erratic epidemic pattern observed in Insular.  260 
 261 
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Supplementary Figures  329 
 330 

 331 
Figure S1. Difference between simulated and observed cases per municipality. Municipalities are 332 
ranked by their population count (largest population at the top). The top panel displays the total difference 333 
per week and the panel on the right displays the total difference per municipality. We compared observed 334 
case counts with simulated case counts for the scenario (A) without any vector control (M-none), and (B) 335 
with vector control in all municipalities (M-all).   336 

 337 
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 338 
Figure S2. Model outcomes compared to reports in terms of epidemic duration. Each box plot 339 
represents the distribution of the difference between the epidemic duration of the reports and the 340 
simulations for each municipality with at least 10 cases reported. The duration of the epidemic was 341 
measured in weeks as the number of weeks between 5 and 95%.  342 
 343 
 344 
 345 
 346 
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 347 
Figure S3. Epidemic curves resulting from sensitivity analysis of pupae per person. Simulated and 348 
reported number of cases for scenarios without vector control while varying the number of pupae per 349 
person from 50% to 150% of the default value of 1.02, with darker color curves corresponding to higher 350 
pupae and lighter color curves to lower pupae per person. The top panels show the simulations for Santa 351 
Marta without vector control (A) and with vector control interventions in place (B). The bottom panels 352 
how the simulations for Riohacha with vector control (C) and without vector control interventions in 353 
place (D).  354 
 355 
 356 
 357 
 358 
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 359 
Figure S4. Epidemic curves resulting from sensitivity analysis of temperature. Simulated and 360 
reported number of cases for scenarios without vector control while varying temperatures according to 361 
those reported for each month of the year instead of the average annual temperature, resulting in average 362 
temperatures ranging from 95% to 103% of the average annual temperature value, with darker color 363 
curves corresponding to higher temperatures and lighter color curves to lower temperatures. The top 364 
panels show the simulations for Santa Marta without vector control (A) and with vector control 365 
interventions in place (B). The bottom panels how the simulations for Riohacha with vector control (C) 366 
and without vector control interventions in place (D).  367 
 368 
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 369 
Figure S5. Effect of vector control on nationwide CHIKV case counts. We simulated epidemic 370 
scenarios with seven different strategies for spatial targeting of vector control across the country: 1) all 371 
municipalities (M-all); 2) no vector control (M-none); 3) 103 municipalities that had reported 372 
chikungunya (M-chikv); 4) 103 randomly selected municipalities (M-random.103); 5) 301 municipalities 373 
that had reported dengue previously (M-dengue); 6) 301 randomly selected municipalities (M-374 
random.301); and 7) 27 major cities (M-cities); (A) Observed case counts (during the calibration and 375 
testing period) and case counts resulting from simulation (averages of 8 runs per scenario); (B) Observed 376 
cumulative case counts (black) and simulated counts for each of the seven strategies over the course of 377 
the 70 week epidemic.   378 
 379 
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 380 
Figure S6. Age and gender distributions from the Census and the synthetic population of Colombia.  381 
The colored bars represent the synthetic population, while the empty bars represent the Census estimates 382 
for 2010.  383 
  384 
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 385 

386 
Figure S7. Synthetic population compared to observed human density and temperature data. (A) 387 
Population density per 1x1 km grid cell estimated by the WorldPop project; (B) population density in our 388 
synthetic population; (C) temperature per 1x1 km grid cell from the WorldClim database; and (D) 389 
synthetic population mosquito density per 1x1 km grid cell. Maps were created using gnuplot 5 390 
(http://www.gnuplot.info).  391 
 392 
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 393 
 394 
 395 
 396 
Supplemental Tables.  397 
 398 
Table S1.  Disease transmission parameters 399 
Parameter Symbol Value Source 
Extrinsic incubation period 𝜉* 1/11 Nishiura H., et. al., 2007 22 
Average mosquito biting rate 𝑏* 0.5 Manore et al., 2014 19, Robinson 

et al., 2014 20  
Mosquito birth and death rate 𝜇* 1/18 Chao D.L., et. al., 2012 28 
Mosquito adult emergence rate 𝛬= 0.83 Focks D., et. al., 2000 16 
Mosquito female ratio 𝜁* 0.5 Focks D., et. al., 2000 16 

Duration of pupal development 𝛿$ 29.98 – (8.38* 
log(T†)) 

Focks D., et. al., 2000 16 

Female adult mosquito per 
location 

𝑁* See equation in 
methods 

Focks D., et. al., 2000 16 

Pupae per person index 𝜌 1.02 Padmanabha H., et. al., 2012 29 
Latency period 𝜉2 6 (sd‡ 1.4) Nishiura H., et. al., 2007 22 
Infectious period 𝛾2  4.83 (sd‡ 1.2) Nishiura H., et. al., 2007 22 
Case detection rate 𝛤2  0.072 Calibrated (Riohacha) 

Mosquito infection probability 𝛽* 0.876 Calibrated (Riohacha) 
Human infection probability 𝛽2 0.196 Calibrated (Riohacha) 
† Temperature 400 
‡ Standard deviation of a lognormal distribution 401 
 402 
Table S2. Vector control parameters 403 
Parameter Symbol Value Source 
Initiation threshold 𝜓5 20 Hypothetical 
Neighborhood recruitment rate 𝜆5 7% Hypothetical 

Location participation rate 𝜔5 0.8 Quintero J., et. al., 2014, 
Ocampo C.B., et. al., 2009, 
Karunaratne S.H.P.P., et. al., 
2013 23–25 

Efficacy 𝜖5 0.8 Quintero J., et. al., 2014, 
Ocampo C.B., et. al., 2009, 
Karunaratne S.H.P.P., et. al., 
2013 23–25 

Duration 𝛵5 700 Decided by authors 
 404 
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Table S3. Nationwide impact of spatial targeting strategies for vector control 405 
Strategy  Mun* Participants Cases 

reported 
Cases prevented 
(%) 

Cases prevented 
per 1000† 

M-none 0 0 903,924 0 (0) 0.00 
M-all  521 24,061,178 500,984 402,940 (44.6) 16.7 
M-dengue  301 17,469,686 589,487  314,437 (34.8) 17.9 
M-random301 301 12,616,411 669,671 234,253 (25.9) 18.6 
M-chikv 103 8,489,214 747,926 155,998 (17.3) 18.3 
M-random103 103 7,326,132 780,791 123,133 (13.6) 16.8 
M-cities 27  9,485,976 719,524 184,400 (20.4) 19.4 
Observed** - - 468,564  - - 

* Number of municipalities with vector-control 406 
** Cases reported between 2014 week 22 and 2016 week 11 407 
† Cases prevented per 1000 people participating in vector control activities 408 
 409 
 410 
 411 
Supplemental Videos.  412 
 413 
Video S1: Spatial progression of the CHIKV epidemic in Colombia with three scenarios: vector 414 
control in all municipalities, vector control in municipalities that previously reported DENV, and 415 
no vector control. Household locations of infected (red) and recovered (green) cases on days 125, 250, 416 
350, and 500 of the epidemic. Altitude per 1x1 km grid cells in grey.  This video was generated using R 417 
v.3.2.3 (https://www.r-project.org). 418 
 419 


